$$\frac{\$14.7\#37:}{\text{Find extrema of } f(x,y) = 2x^{3}+y^{4}}$$
on $D = \Im(x,y) | x^{2}+y^{2} \leq 1\Im$

If region over which we are optimizing look

like...

II

 11

 11

 12

 13

 14

 14

 14

 15

 14

 15

 15

 15

 16

 16

 17

 17

 17

 18

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

In our problem: D_ @ $x^{2}+y^{2} \le 1$ $x^{2}+y^{2} < 1$ $x^{2}+y^{2} = 1$ $() \nabla f(x,y) = \langle bx^2, 4y^3 \rangle = \hat{0}$ only sol is x=0 y=0 (is in $x^2 + y^2 \leq 1$ \checkmark) (2) $2x^{3} + y^{4} = 2x^{3} + (1 - x^{2})^{2}$ using $x^{2} + y^{2} = 1$

 $= 2x^{3} + |-2x^{2} + x^{4}$ $= \chi^{4} + 2\chi^{3} - 2\chi^{2} + 1$ $q(x) = x^{4} + 2x^{3} - 2x^{2} + 1$ Then look for when q'(x) = 0. $f(x) = x \quad on$ $domain \quad [1,2]$ $1 \quad 2$ The min/max are obvious @ endpoints, but calculus (i.e. f'(x)=D) doesn't see them.

Why is A relevant to this question? b/c in 2, x is constrained to the interval [-1, 1] and doing g'(x)= O will only find candidates strictly between -1 and 1. So really we also have to consider the two points X=-1 and 1 as candidates separately.

Another example: what point(s) on the surface $x^{2} + y^{2} - z^{2} = 1$ are closest to the origin (0,0,0)? F J JY From picture, quess answer × should be these points.

Algebraically, want to minimize $\int x^2 + y^2 + z^2$ Equivalent to minimizing x+y2+22. $x^{2}+y^{2}+z^{2} = 2x^{2}+2y^{2}-|$ $x^2 + y^2 - z^2 = 1$ Call $f(x,y) = 2x^2 + 2y^2 - 1$. $\nabla f(x,y) = \langle 4x, 4y \rangle = \bar{2}$ Only colution: (0,0)

. What went wrong: I am not trying to minimize fix, y) = 2x2+2y2-1 on 21 of R, rather, only on

D is analyzed by √f=5, which is what I did

E needs to be considered separately, which I clid not do.

Botton line: when eliminating variables, be caveful not to forget unstraints! New "boundary" regions might appear.

Respond at PollEv.com/xianglongni346 Text XIANGLONGNI346 to 37607 once to join, then A, B, C, or D

Suppose that f is a function defined on all of \mathbb{R}^2 . If $f_x(x,y)=3xy+y^2$, which of the following *cannot* be $f_y(x,y)$?

$$3x^2/2+2y(x+y^2)$$
 A $3xy+x^2$ B $3x^2/2+2xy$ CAll of the above are possible D

Method 1:
Clairant's Thm says:

$$(f_x)_y = (f_y)_x$$

 $\frac{\partial}{\partial y} (3xy+y^2) = (f_y)_x$
 $\frac{\partial}{\partial y} (3xy+y^2) = (f_y)_x$
 $\frac{\partial}{\partial y} (x,y) = 3xy + x^2$, then
 $f_y(x,y) = 3xy + x^2$, then
 $f_y(x,y) = 3y+2x \neq 3x+2y$
so this is impossible.

$$\frac{Method 2}{f(x,y)} = \frac{3}{2}x^{2}y + y^{2}x + \frac{C(y)}{f}$$

$$f(x,y) = \frac{3}{2}x^{2}y + y^{2}x + \frac{C(y)}{f}$$
Some fundion of y
above
(i.e. o "constant" from x's
perspective)

$$f_{y}(x,y) = \frac{3}{2}x^{2} + 2yx + \frac{C'(y)}{f}$$

$$\frac{1}{2}x^{2} + 2yx + \frac{C'(y)}{f}$$

$$\frac{1}{2}x^{2} + \frac{1}{2}yx + \frac{1}{2}y^{2}$$
(but the other answer choices are
possible.)

$$\frac{\#1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{m \times 2 \cos(m \times)}{3 \times 2 + m^2 \times 2}$$

$$= \lim_{k \to 0} \frac{m}{3 \times 2 + m^2} \cos(m \times)$$

$$= \frac{m}{3 + m^2} \frac{1}{1} \cosh(m \times)$$

$$\frac{1}{1} \frac{1}{1} \frac$$