§ $14.77^{7} 37$.
Find extrema of $f(x, y)=2 x^{3}+y^{4}$
on $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

If region over which we are optimizing looks like...

II

(1)
for (1). just find critical pts: $\nabla f=\overrightarrow{0}$. These are the candidates for extreme.
(2) For exch line segment, reduce to a SVC problem by rewriting $f(x, y$ as a function of a single var.
(3) Exch isolated point is itself a canclidate.

In our problem:

(1) $\nabla f(x, y)=\left\langle b x^{2}, 4 y^{3}\right\rangle=\overrightarrow{0}$
only sol is $x=0 \quad y=0$
(is in $x^{2}+y^{2}<1 \quad \checkmark$)
(2) $2 x^{3}+y^{4}=2 x^{3}+\left(1-x^{2}\right)^{2}$
using $x^{2}+y^{2}=1$

$$
\begin{aligned}
& =2 x^{3}+1-2 x^{2}+x^{4} \\
& =x^{4}+2 x^{3}-2 x^{2}+1 \\
& g(x)=x^{4}+2 x^{3}-2 x^{2}+1
\end{aligned}
$$

Then look for when $g^{\prime}(x)=0$.

The min/max are obvious (2) endpoints, but calculus (ie. $f^{\prime}(x)=0$) dresn't see them.

Why is 1 relevzut to this question? b / c in (2). x is constrained to the interval $[-1,1]$ and doing $g^{\prime}(x)=0$ will only find candidates strictly between -1 and 1 .

So really we also have to consider the two points $x=-1$ and I as candidates separately.

Another example:
What poinf(s) on the surface

$$
x^{2}+y^{2}-z^{2}=1
$$

ave closest to the origin $(0,0,0)$?

Algebraically, want to minimize

$$
\sqrt{x^{2}+y^{2}+z^{2}}
$$

Equivalent to minimizing $x^{2}+y^{2}+z^{2}$

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=2 x^{2}+2 y^{2}-1 \\
x^{2}+y^{2}-z^{2}=1 \\
\text { Call } f(x, y)=2 x^{2}+2 y^{2}-1 . \\
\text { प } f(x, y)=\langle 4 x, 4 y\rangle=\overrightarrow{0}
\end{gathered}
$$

only solution: $(0,0)$
(1) What went wrong: I am not t trying to minimiser $f(x, y)=2 x^{2}+2 y^{2}-1$ on ul l of \mathbb{R}^{2}, rather, only on

(1) is analyzed by $\nabla f=\overrightarrow{0}$, which is what I did
(2) needs to be considered separately, which I did not do.

Bottom line: when eliminating variables, be careful not to forget cingivaints!
New" boundary" regions might appear.

Suppose that f is a function defined on all of \mathbb{R}^{2}. If

$$
f_{x}(x, y)=3 x y+y^{2} \text {, which of the following *cannot* be } f_{y}(x, y) \text { ? }
$$

$$
\begin{array}{c|c}
3 x^{2} / 2+2 y\left(x+y^{2}\right) & \text { A } \\
3 x y+x^{2} & \text { B } \\
3 x^{2} / 2+2 x y & \text { C } \\
\text { All of the above are possible } & \text { D }
\end{array}
$$

Mchod/:
Claviant's The sags:

$$
\begin{aligned}
& \qquad\left(f_{x}\right)_{y}=\left(f_{y}\right)_{x} \\
& \frac{\partial}{\partial y}\left(3 x y+y^{2}\right)=\left(f_{y}\right)_{x} \\
& 3 x+2 y \\
& \text { If } f_{y}(x, y)=3 x y+x^{2} \text {, then } \\
& f_{y x}(x, y)=3 y+2 x \neq 3 x+2 y
\end{aligned}
$$

so this is impossible.

Method 2: Jut integnte.

$$
\begin{aligned}
& f_{x}(x, y)=3 x y+y^{2} \\
& f(x, y)=\frac{3}{2} x^{2} y+y^{2} x+\frac{C(y)}{f}
\end{aligned}
$$

sime fuctoo of y
abre (i.e.: "constount" frem $x^{\prime \prime}$ perspective)

$$
\begin{aligned}
f_{y}(x, y) & =\frac{3}{2} x^{2}+2 y x+C^{\prime}(y) . \\
& \neq 3 x y+x^{2}
\end{aligned}
$$

(but the other ansuer chnces) ane possible.)

$$
\text { Compute } \lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos (y)}{3 x^{2}+y^{2}} \text { if it exists (or write "DNE" if }
$$

> Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin ^{2}\left(\sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}}$ if it exists (or write"DNE" if not).
\#1) Along $g=m x$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{m x^{2} \cos (m x)}{3 x^{2}+m^{2} x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{m}{3+m^{2}} \cos (m x)
\end{aligned}
$$

$=\frac{m}{3+m^{2}}$. This depends on m, so limit DNE.

$$
\begin{aligned}
& \text { \#2) } \lim _{\substack{r \rightarrow 0^{+} \\
\theta \text { any }}} \frac{\sin ^{2}(r)}{r^{2}} \\
& =\left(\begin{array}{l}
\left.\lim _{r \rightarrow+}^{r \rightarrow+} \frac{\sin (r)}{r}\right)^{2}=1^{2}=1 \\
0 \text { jur }=1
\end{array}\right.
\end{aligned}
$$

